

Prevalence and serotype distribution of Streptococcus pneumoniae colonization in infants too young to be immunized in Nepal

Brian Wahl¹, Jyoti Kumari Yadhav², Rashmila Deshar², Madhav Chandra Gautam², Meeru Gurung², Sarah Kelly^{3,4}, Stephen Thorson², Imran Ansari², David Murdoch⁵, Bradford Gessner⁶, Michael J Carter^{3,4}, Rama Kandasamy^{3,4}, Dominic Kelly^{3,4}, Andrew J Pollard^{3,4}, Katherine L O'Brien¹, Shrijana Shrestha²

¹ International Vaccine Access Center (IVAC), Department of International Health, Johns Hopkins Bloomberg School of Public Health; ² Patan Academy of Health Sciences (PAHS); ³ Oxford Vaccine Group, Department of Paediatrics, University of Oxford; ⁴ NIHR Biomedical Research Centre, Oxford; ⁵ Department of Pathology, University of Otago; ⁶ Agence de Médecine Préventive (AMP)

INTRODUCTION

- In August 2015, Nepal introduced 10-valent pneumococcal conjugate vaccine (PCV10) using a 2+1 schedule as follows: 6 weeks, 10 weeks, and 9 months. Children less than 1 year were eligible for catch-up immunization at the time of introduction.
- Several studies have demonstrated the impact of PCV on vaccine-type nasopharyngeal carriage in unvaccinated individuals (i.e. indirect effects). However, such data are lacking in Asia and there is little evidence available in children too young to be immunized.
- To establish a comparator for assessing PCV10 indirect effects in this populations, we measured prevalence and serotype distribution of pneumococcal colonization in young infants prior to the introduction of PCV in Nepal.

METHODS

- Participants: Asymptomatic children or children with minor upper respiratory tract infections less than 8 weeks who were attending the outpatient clinic Patan Hospital for routine immunizations or accompanying a family member were recruited to the study.
- Þ Nasopharvngeal swabs were obtained using updated World Health Organization methods.1
- Pneumococci were cultured and identified phenotypically; serotyping was by the Quellung reaction.

RESULTS

- 600 infants were recruited from July to December 2014. The median age was 6.4 weeks (IQR: 6.3-6.7). Of these children, 55.7% (334/600) were male and 44.3% (266/600) were female.
- Overall pneumococcal colonization prevalence in this population was 18.8% (113/600).
- We identified 38 different serotypes—see Figure 1.
- Most common serotypes among the 79 (69.9%) typeable pneumococci: o 19F (n=9, 8.0%)
 - o 10A (n=7, 6.2%)
 - o 6A (n=4, 3,5%)
- PCV10 and PCV13 serotypes accounted for 26.5% (30/113) and 292% (33/113) of isolates, respectively.

CONCLUSIONS

- Pneumococcal colonization among very young infants in Kathmandu is somewhat less common compared with that of similarly aged children in other Asian settings—see Table 1.
- Vaccine-type pneumococci accounts for a minority of colonizing strains in this age group.
- The data we present will form the **baseline** for an assessment of **indirect** effects on carriage among infants too young to be vaccinated in Nepal.

References:

- Satzke, Catherine, et al. "Standard method for detecting upper respiratory carriage of Streptococcus pneumoniae: updated recommend ations from the Volid Health Organization Pheumococcal Carriage Working Gon up." *Vacaine* 32.1 (2013): 165-179. Granat, Simo M., et al. "Long durind study on pneumococcal carriage during the first year of life in Bangladeh." *The Pediation in faction usalieus es journal* 26.4 (2007): 31-932.4 Df Saha, Samir K., et al. "Comparison of artibidic resistance and sen type composition of carriage and imasive pneumonoi arrong Bangladehi children implications for textment policy and vaccine formulation." *Journal of clinical microbiology* 41.12 (2003): 1. 2
- 3
- 5582-5587.Df Rupa, V., et al. "Risk factors for upper res
- 5 S8 2 5 S87D f Rupa, V., et al. "Risk factors for upper respiratory infection in the first year of life in a birth cohort." In ternational journal of pediatric to chinical prog day 76.12 (2012): 1 835-1839.D f van den Biggelaar, Ania H., et al. "Effector foarly carriage of Strep to coccus preumoriae on the development of preumococcal protein-specific cellularismum ere responses in fanal ov." *The Pediatic infectious dese a journal* 31.3 (2012): 243-248. Holmlund, Emma, et al. "Development of natural antibo des to preumococcal surface proteinA, preumococcal surface antibility of the interference of the second sec
- 5.
- 6.
- and pneumolysinin Filipino pregnant women and their infantsin relation to pneumo cocal carriage." Va ccine 24.1 (2006): 57-65. Turner, Paul, et al. "A longitudinal study of Streptococcu spneumoniae carriage in a cohort of infants and theirmothers on the [hailand - Mvan marborder." *Plo Sone* 7.5 (2012) : e38 271

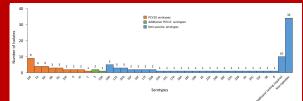


FIGURE 1 Serotype distribution in children too young to be immunized from Patan Hospital

Table 1

Estimates of colonization prevalence and serotype distribution in children less than or equal to 6 weeks of age in Asia

Country	Setting	Age group	Colonization prevalence	PCV serotype coverage	Reference
Nepal	Urban	6 weeks	18.8% (113/600)	PCV10:23.9% (27/113) PCV13:29.2% (33/113)	Current study
Bangladesh	Rural	0-1 w eek	6.7%	Not provided*	[2]
Bangladesh	Rural	2-3 weeks	22%	Not provided*	[2]
Banglade sh	Rural	4-5 weeks	29%	Not provided*	[2]
Banglade sh	Rural	0-4 weeks	29.4% (10/34)	Not provided*	[3]
Banglad e sh	Urban	0-4 weeks	18.8% (3/16)	Not provided*	[3]
India	Rural	4 weeks	3.8% (8/210)	Not provided	[4]
Papua New Guinea	Rural	0-2 weeks	39.8% (111/279)	Not provided	[5]
Philippines	Urban	6 weeks	27.7%	Not provided	[6]
Thailan d	Rural	0 weeks	0.0%	N/A	[7]
Thailan d	Rural	4 weeks	39.5% (93/234)	PCV13:46.2% (43/93)	[7]

ut not for children less than 6 weeks of are

Funding Statement:

The project is supported by the Gavi Alliance.