Measuring the impact of 10-valent pneumococcal conjugate vaccine on pneumonia, meningitis, and sepsis hospitalizations in Nepal: proposed methods

Brian Wahl1, Meelu Gurung2, Stephen Thorson2, Arun Sharma3, Shrijana Shrestha2, Michael J Carter4,5, Sarah Kelly4,5, Katherine L O’Brien1, Bradford D Gesse4, Andrew J Pollard4,5, Imran Ansari2, Jennifer C Mois2

1 International Vaccine Access Center (IVAC), Department of International Health, Johns Hopkins Bloomberg School of Public Health; 2 Patan Academy of Health Sciences (PAHS); 3 Nepal Pediatric Society (NEPAS); 4 Oxford Vaccine Group, Department of Paediatrics, University of Oxford; 5 NIHR Biomedical Research Centre, Oxford; 6 Agence de Médecine Préventive (AMP)

INTRODUCTION

- In August 2015, the 10-valent pneumococcal conjugate vaccine (PCV10) was introduced in the Kathmandu valley using a 2+1 schedule, with immunization at 6 weeks, 10 weeks, and 9 months of age. Children less than 1 year old at the time of introduction were recommended to receive 1-3 doses whenever possible.
- The introduction of PCV10 in Nepal provides an opportunity to measure the impact of this vaccine on pneumonia, meningitis, and sepsis hospitalizations using administrative data from a low-income country in Asia. To inform analytical approaches for measuring vaccine impact on these endpoints, we studied hospitalizations for several syndromes in the period prior to PCV10 introduction.

METHODS

- The Paediatrics Department at Patan Hospital has rigorously maintained electronic records of admissions since 2005.
- We extracted clinical discharge diagnoses for children less than 5 years of age as cases (i.e., pneumonia, meningitis or sepsis) and controls (i.e., diarrhea).
- We used various exploratory time series methods to identify trends and seasonal signatures during the three years prior to the introduction of PCV10 in Nepal.

RESULTS

- Pneumonia, meningitis, sepsis, and diarrhea accounted for 1193, 237, 353, and 465 hospital admissions, respectively, at Patan Hospital in the three years prior to the introduction of PCV10.
- The annual number of hospitalizations for each syndrome increased from year one to year two, then decreased in year three (Figure 1).
- Seasonality was observed most clearly for pneumonia and diarrhea.
 - On average, there were 47.2% more pneumonia admissions in September and 20.5% fewer admissions in May compared with the other months in the same year (Figure 2).
 - The highest number of diarrhea admissions were observed between February and May. The fewest number of diarrhea admissions were observed in September and October (Figure 2).

CONCLUSIONS

- During the pre-PCV period, counts of hospitalizations for pneumonia, meningitis, and sepsis increased after the first year and then decreased following the second year.
- Diarrhea followed the same annual trends observed for the case conditions. Diarrhea could possibly be used as a control condition to improve our ability to measure the impact of PCV on pneumonia by controlling for confounding by access to hospital.
- Data from other hospitals in Kathmandu could help to refine our estimates of hospitalization trends and seasonality.
- We will explore the use of logistic regression models conditioned on control condition counts, corrected for over-dispersion, and of change-point analyses to estimate the impact of PCV10 in Nepal.