THE IMPACT OF PNEUMOCOCCAL CONJUGATE VACCINE INTRODUCTION IN NEPAL: A SIX-YEAR PAEDIATRIC SURVEILLANCE STUDY

Shrijana Shrestha1, Meeru Gurung1, Stephen Thorson1, Bhishma Pokhrel1, Pratistha Maskey1, Puja Amatya1, Madhav C Gautam2, Michael J Carter2,3, Rama Kandasamy4, Brian Wahl5, Sarah Kelly2, Krishna Govinda Prajapati1, Sonu Shrestha2, Maria Deloria Knoll5, Jason Hinds6,7, Ganesh Shah1 Dominic F Kelly2,3, David Murdoch8, Merryn Voysey2, Andrew J Pollard2,3 and the PneumoNepal study group

1Paediatric Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
2Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
3NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
4University of New South Wales, School of Women and Children’s Health, University of New South Wales, Sydney, Australia
5International Vaccine Access Centre, Department of International Health, Johns Hopkins Bloomberg School of Health
6Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
7BUGS Bioscience, London Bioscience Innovation Centre, London, United Kingdom
8Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand

Keywords:
Invasive pneumococcal disease, nasopharyngeal carriage, pneumonia, pneumococcal conjugate vaccine, vaccine impact

Background
S. pneumoniae is a major cause of bacterial pneumonia and an important cause of invasive bacterial disease (IBD) in children under-five years of age in Nepal. Pneumococcal conjugate vaccine, PCV10, was introduced in 2015 with a 2+1 schedule.

Methods
We assessed the programmatic impact of PCV10 introduction using surveillance for nasopharyngeal (NP) colonisation, pneumonia and IBD. NP swabs from pneumonia inpatients and from healthy children, blood cultures from inpatients with suspected IBD, and chest x-rays from inpatient pneumonia cases were obtained over a 6-year period (2014-2019).

Results
The proportion of pneumonia cases with radiographic endpoint-consolidation (likely bacterial) was 34% lower (95%CI 19-46%) in 2018 compared with the pre-vaccine period (2014-2015). Vaccine serotype (VT) carriage in children under 2-years of age with pneumonia in 2019 was 78% lower (95%CI 30-93%) than in the pre-vaccine period.

Among healthy 6-23 month old children (urban and rural cohorts), VT-carriage declined 74% (95%CI 43-82%) by 2019. An increase in PCV13-additional-serotype carriage was seen in 2018 among rural-children (prevalence-ratio 1.65, 95%CI 1.17-2.32), but not urban-children.

Serotype 1 remains the dominant serotype detected in cases of invasive pneumococcal disease.
Conclusion
A decrease in prevalence of endpoint-consolidation-pneumonia and a decrease in vaccine-serotype circulation have been observed post PCV introduction in Nepal.